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Abstract 

The scale at which supersymmetry is broken and the mechanism by which 
supersymmetry breaking is fed down to the observable sector has rich implica- 
tions on the way Nature may have chosen to accomplish inflation. We discuss 
a simple model for slow rollover inflation which is minimal in the sense that 
the inflaton may be identified with the field responsible for the generation 
of the p-term. Inflation takes place at very late times and is characterized 
by a very low reheating temperature. This property is crucial to solve the 
gravitino problem and may help to ameliorate the cosmological moduli prob- 
lem. The COBE normalized value of the vacuum energy driving inflation 
is naturally of the order of 10 l1 GeV. This favors the N = 1 supergravity 
scenario where supersymmetry breaking is mediated by gravitational inter- 
actions. Nonetheless, smaller values of the vacuum energy are not excluded 
by present data on the temperature anisotropy and the inflationary scenario 
may be implemented in the context of new recent ideas about gauge media- 
tion where the standard model gauge interactions can serve as the messangers 
of supersymmetry breaking. In this class of models supersymmetry breaking 
masses are usually propor tional to the F-term of a gauge singlet superfield. 
The same F-term may provide the vacuum energy density necessary to drive 
inflation. The spectrum of density perturbations is characterized by a spec- 
tral index which is significantly displaced from one. The measurements of 
the temperature anisotropies in the cosmic microwave background radiation 
at the accuracy expected to result from the planned missions will be able to 
confirm or disprove this prediction and to help in getting some deeper insight 
into the nature of supersymmetry breaking. 

*Email: riottoQfnasOl.fnal.gov. 
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I. INTRODUCTION 

It is widely accepted that the structure of the standard model of gauge interactions is not 

complete. Only to mention a few drawbacks, the theory has a plenty of unknown parame- 

ters, it does not describe the origin of fermion masses and why the number of generations is 

three. The spontaneous symmetry breaking is triggered by a light fundamental scalar, the 

Higgs field, which is something difficult to reconcile with our current understanding of field 

theory. Finally, gravity is not incorporated. It is tempting to speculate that a new (but yet 

undiscovered) symmetry, supersymmetry (SUSY) [ 11, may provide answers to these funda- 

mental questions. Supersymmetry is the only framework in which light fundamental scalars 

appear natural. It addresses the question of parameters: first, unification of gauge couplings 

works much better with than without supersymmetry; second, it is easier to attack questions 

such as fermion masses in supersymmetric theories, in part simply due to the presence of 

fundamental scalars. Supersymmetry seems to be intimately connected with gravity. So 

there are a number of arguments that suggest that nature might be supersymmetric, and 

that supersymmetry might manifest itself at energies of order the weak interaction scale. 

Another fundamental question is whether supersymmetry plays a fundamental role at 

the early stages of the evolution of the universe and, more specifically, during inflation 

[2]. The vacuum energy driving inflation is generated by a scalar field 4 displaced from 

the minimum of a potential V (4). Q uantum fluctuations of the inflaton field imprint a 

nearly scale invariant spectrum of fluctuations on the background space-time metric. These 

fluctuations may be responsible for the generation of structure formation. However, the level 

of density and temperature fluctuations observed in the present universe, 6~ = 1.94 x 10V5, 

require the inflaton potential to be extremely flat [3]. F or instance, in the chaotic inflationary 

scenario [4] where the inflaton potential is V = X4” and the scalar field sits initially at scales 

of order of the Planck scale, the dimensionless self-coupling X must be of order of lo-l3 to 

be consistent with observations. The inflaton field must be coupled to other fields in order 

to ensure the conversion of the vacuum energy into radiation at the end of inflation, but 

these couplings must be very small, otherwise loop corrections to the inflaton potential spoil 

its flatness. This is where supersymmetry comes to rescue. 

While the necessity of introducing very small parameters to ensure the extreme flatness 

of the inflaton potential seems very unnatural and fine-tuned in most non-supersymmetric 

theories, this technical naturalness may be achieved in supersymmetric models. Indeed, 

the nonrenormalization theorem guarantees that a fundamental object in supersymmetric 

theories, the superpotential, is not renormalized to all orders of perturbation theory [5]. In 

other words, the nonrenormalization theorems in exact global supersymmetry guarantee that 

we can fine-tune any parameter at the tree-level and this fine-tuning will not be destabilized 
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by radiative corrections at any order in perturbation theory. Therefore, inflation in the 

context of supersymmetric theories seems, at least technically speaking, more natural than 

in the context of non-supersymmetric theories. 

On the other hand we know that the world is not globally supersymmetric: experimental 

searches show that scalar partners of the known fermions must be heavier than about 100 

GeV. In Nature, supersymmetry must be a broken symmetry. Moreover, supersymmetry 

is necessarily broken during the inflationary stage by the vacuum energy density driving 

inflation. It seems therefore evident that the way and the scale at which supersymmetry are 

crucial ingredients in any inflationary scenario. 

The most common and popular approach is to implement supersymmetry breaking in 

some hidden sector where some F-term gets a vacuum expectation value (VEV) and then 

transmit it to the standard model sector by gravitational interactions. This is the so-called 

hidden N = 1 supergravity scenario [l]. If one arranges the parameters in the hidden sector 

in such a way that the typical (F)-term is of the order of (F)‘/’ N dm N 1011 

GeV, where Mpl = 2.4 x 101’ GeV, the gravitino mass ma/2 turns out to be of the order of 

the TeV scale. 

An alternative to the hidden N = 1 supergravity scenario is to break supersymmetry 

dynamically at lower energies. It has been known for a long time that supersymmetry 

breaking in four dimensions may be dynamical [6, 71. There are many ways dynamical 

supersymmetry may arise. In theories like string theory, the potential is characterized by 

many classicaly flat directions. Typically, the potentials generated along these flat directions 

fall down to zero at large values of the fields. Perhaps, the most familiar example of this kind 

is the dilaton of string theory whose potential goes to zero in the weak coupling regime [8]. 

These potentials, however, must be stabilized by some mechanism and so far no compelling 

model has been proposed. Alternatively, models are known in which supersymmetry is 

broken without flat directions [6] and no need of complicated stabilization mechanisms is 

asked for. One can think of breaking supersymmetry at low energies. In such a case, gauge 

interactions can serve as the messangers of supersymmetry breaking and the SUSY breaking 

mediators are fields that transform nontrivially under the standard-model gauge group [9]. 

These are the socalled gauge mediated supersymmetry breaking (GMSB) models. The 

cosmology of this latter class of models has only been partially explored. In particular, a 

simple model for inflation in the context of GMSB models has been recently sketched in 

It is the purpose of this paper to analyzed in more details and to extend the results of 

ref. [lo] and to show that it is possible to construct an inflationary model satisfying a sort 

of “minimal principle” which requires that the inflaton field should not be an extra degree 
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of freedom inserted in some supersymmetric theory of particle physics just to drive inflation 

[lo]: the inflaton field may be identified with the same scalar responsible for the generation 

of the p-term present in the effective superpotential of the minimal supersymmetric standard 

model, W, = pHuH0. This opens the exciting possibility of connecting a theory which could 

be tested at accelerators with measurements of the temperature anisotropy in the cosmic 

microwave background and related measurements of the two-point correlation function. 

Quantum fluctuations of the inflaton field give rise to temperature perturbations in the 

CMB at the level of 6~ = 1.94 x 10s5. It is very intriguing that the correct level of density 

perturbations is predicted if the energy V ‘i4 driving inflation is of the order of 1011 GeV, 

the same scale springing out in the N = 1 supergravity scenario where supersymmetry 

breaking is mediated by gravitational interactions. Present experimental data, however, do 

not exclude smaller values of V1i4, of the order of lOlo GeV. We will argue that this relatively 

high scale is not unnatural in the context of GMSB models and that, if supersymmetry 

breaking is mediated by gauge interactions, the energy density driving inflation may be 

identified with the same F-term responsible for the spectrum of the superpartners in the 

low-energy effective theory. 

The fluctuations arising from the quantum fluctuations of the inflaton field may be 

characterized by a power spectrum, which is the Fourier transform of the two-point density 

autocorrelation function. The power spectrum S& has the primordial form proportional to 

Ic(“-l), where k is the amplitude of the Fourier wavevector and n denotes the spectral index. 

We will show that the spectral index may be significantly smaller than 1. This means that 

the inflationary stage generates density perturbation which are far from being scale invariant. 

In the model discussed in this paper, larger values of In - 11 are associated to smaller values 

of the SUSY breaking scale. This prediction has the advantage that the measurements of 

the temperature anisotropies in the cosmic microwave background (CMB) at the accuracy 

expected to result from two planned missions, the Microwave Anisotropy Probe (MAP) and 

PLANCK (formerly COBRAS/SAMBA), will allow us to confirm or disprove the model 

and, if confirmed, to help in getting some deeper insight into the nature of supersymmetry 

breaking. 

Another distinguishing property of the inflationary scenario investigated in this paper 

is that inflation takes place at late times, when the Hubble parameter H is lo2 GeV or 

so. This late period of inflation has dramatic effects on the gravitino problem which is a 

common conundrum in both the N = 1 supergravity scenario and in the GMSB models. 

In GMSB model building it is usually assumed that the gravitino is very light and 

certainly the lightest supersymmetric particle. This happens because the gravitino mass is 

given by rns/2 N F/Mpl and the scale of supersymmetry breaking is taken to be of the order 
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of fl - lo6 GeV. The resulting gravitino mass is in the KeV range. However, if one is 

willing to identify the scale of inflation with the same F-term responsible for the spectrum 

of the superpartners, the COBE normalization predicts values for the F-term higher than 

usually assumed. As we will show, this does not exclude the possibility of implementing 

inflation in the framework of GMSB theories. The gravitino mass may be of the order of 

50 GeV. It is remarkable that such heavy gravitinos do not pose any cosmological problem. 

If the gravitino is cosmologically stable and it is thermalized in the early universe and not 

diluted by any mechanism, its mass density may exceed the closure limit fl3/2 s 1. Since 

the number density of gravitinos is fixed once they are thermalized, the above argument 

sets a stringent upper bound on the gravitino mass, m3i2 <, 2 keV if no dilution is present 

[ll]. However, we will show that such stable gravitinos are efficiently diluted during the 

inflationary stage and they are not produced in the subsequent stage of reheating. This 

happens because the reheating temperature turns out to be very low, of the order of 1 GeV. 

If gravitinos are cosmologically unstable, which is certainly the case in the N = 1 su- 

pergravity scenario and is a possibility in GMSB models, their decays do not jeopardize the 

nice predictions of big-bang nucleosynthesis being the reheating temperature very small. 

We will also address shortly the cosmological problem represented by moduli M. In 

models of gauge mediation, if we assume that the underlying theory is a string theory, the 

cosmological moduli problem is even more than in the usual supergravity scenarios [12]. The 

period of inflation may take place at a sufficiently late stage of the universe, H & mM, that 

the number density of string moduli is exponentially reduced during inflation and by the 

subsequent entropy production at the reheat stage [13]. However, this may be not enough, 

since the minimum of the moduli potential, generically, will be shifted by an amount of 

order i&l during inflation and it is probably necessary to invoke symmetry reasons so that 

the minima during inflation and at the present day coincide to a high degree of accuracy. 

Despite the low value of the reheating temperature, the production of the baryon asym- 

metry may occur during the stage at which the universe is reheated up and the standard 

big-bang era begins. We will show in details that this is possible if the inflaton field has 

nonrenormalizable which contain CP-violation and baryon number violation. 

The paper is organized as follows. In section II we shortly describe the main features 

of the N = 1 supergravity scenario and of GMSB models; the p-problem and one possible 

solution to it are addressed in section III; sections IV and V deal with the inflationary 

stage and the post-inflationary stage, respectively; conclusions and outlook are presented in 

section VI. 
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II. THE SCALE OF SUPERSYMMETRY BREAKING 

As we already mentioned, the scale of supersymmetry breaking, is usually much larger 

than the weak scale. 

The most convenient and widely used approach is to implement supersymmetry breaking 

in some hidden sector and then transmit it to the standard model sector by gravitational 

interactions. The scale of breaking is of order 10 l1 GeV. An alternative possibility which 

has attracted so much attention recently is that supersymmetry breaking is transmitted via 

the gauge interactions of a distinct messenger sector which contains fields that transform 

nontrivially under the standard-model gauge group. Let us now shortly review these two 

different scenarios. 

A. Hidden N = 1 supergravity scenario 

When supersymmetry is promoted from a global to a local symmetry, gravity is au- 

tomatically taken into account and, accordingly, the theory is dubbed supergravity. The 

supergravity lagrangian is defined in terms of the Kahler potential K (a, at) which can be 

split according to 

K (a, at) = d (a, at) + ln]W(Q)]2, (1) 

where <PA ZE (#, y”) are the left-handed chiral superfields of the hidden (8) and observable 

(y”) sectors. Here d and W (the superpotential) must be chosen to be invariant under the 

symmetries of the theory. Notice that the Kahler potential in the hidden sector needs not 

to be minimal, Kmin = CA 4;4A. Since higher order terms (suppressed by powers of Mpl) 

are not forbidden by any symmetry (or in any case they are expected to be generated by 

radiative corrections), they will surely be present at some level. 

From K one can derive the scalar potential V 

V = exp (d/M:,) [F*‘(d-‘)zFB - 3E] + D - terms, 

where 

PA== ( 
dd W -- 

A+ dW lL!f?l’ ) 

(d-l); = -‘. 

(2) 

Requiring that the low-energy lagrangian for the matter fields is not multiplied by powers 

of Mpl defines the dependence on Mpl of W and d [14] 
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wt, Y) = M;,w(2)(o + MPlW(l)(E) + W(O)((, y), 

d(h t, Y, yt) = M;4d2)(E, Et) + Mp&‘((, tt) + d”‘(f, St, y, yt), (4) 

where Ei E #/Mpl. In addition, to obtain a renormalizable low-energy theory, we must 

require kinetic terms for the ya fields of the form [14] 

d(‘)(E, & Y, Y? = Y’%(& Et)ybt + (W, tt, Y) + h-c.) > (5) 

with the vacuum expectation value (A:) = 6:. Finally, the 8 fields being gauge singlets, 

gauge invariance requires Ai to be diagonal. If there are no mass scales in the theory other 

than Mpl and those induced by some spontaneous symmetry breaking (this is what happens 

in superstring-inspired theories), the renormalizable self couplings of the light fields y” is of 

the form [15] 

w(“)(tY Y> = c GmP(Y), 

VT tt7 Y> = e 4ra E%?(Y), (6) 
m 

where g?)(y) and g:)(y) are, respectively, the trilinear and bilinear terms in ya allowed 

by the symmetries of the theory. From these expressions one can show that, in the limit 

Mpl + XI and after the hidden sector gauge singlets have acquired a vacuum expactation 

value such that (&) N 1, th e soft SUSY breaking terms in the effective potential of the light 

fields of the ordinary matter sector are characterized by a common scale m3i2, the gravitino 

mass 

m312 = (e WqA2)). 

If one chooses the parameters in the hidden sector in such a way that the typical (F)-term 

is of the order of ( F)‘/2 N 1011 GeV, the gravitino mass turns out to be of the order of 

m3/2 - (e d”‘/‘JW(2)) N 103 TeV. 

B. Low energy dynamical supersymmetry breaking and gauge mediation 

An alternative approach to the supergravity approach is to suppose that supersymmetry 

is broken at some low energy, with gauge interactions serving as the messengers of supersym- 

metry breaking [9]. Th e b asic idea is that the theory contains new fields and interactions 

which break supersymmetry. Some of these fields are taken to carry ordinary standard 

model quantum numbers, so that ordinary squarks, sleptons and gauginos can couple to 

them through gauge loops. 
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The minimal gauge mediated supersymmetry breaking models are defined by three sec- 

tors: (i) a secluded sector that breaks supersymmetry; (ii) a messenger sector that serves 

to communicate the SUSY breaking to the standard model and (iii) the standard model 

sector. The minimal messenger sector consists of a single 5 + 5 of SU(5) (to preserve gauge 

coupling constant unification), i.e. color triplets, Q and a, and weak doublets e and ? with 

their interactions with a singlet superfield X determined by the following superpotential: 

w = x1xqq + x2xa (8) 

When the field X acquires a vacuum expectation value for both its scalar and auxiliary com- 

ponents, (X) and (Fx) respectively, the spectrum for (q, l) is rendered non-supersymmetric. 

Integrating out the messenger sector gives rise to gaugino masses at one loop and scalar 

masses at two loops. For gauginos, we have 

Mj(A) = kj$A, j = 1,2,3, (9) 

where A = (Fx)/(X), ICI = 5/3, k2 = k3 = 1 and (~1 = cu/ cos2 8~. For the scalar masses 

one has 

E2(A) = 25 Cjkj F 1 1 Cyj(A) 2 A2 7 
j=l 

(10) 

where Ca = 4/3 for color triplets, C2 = 3/4 f or weak doublets (and equal to zero otherwise) 

and Ci = Y2 with Y = & - 7’s. 

Because the scalar masses are functions of only the gauge quantum numbers, the flavour- 

changing-neutral-current processes are naturally suppressed in agreement with experimen- 

tal bounds. The reason for this suppression is that the gauge interactions induce flavour- 

symmetric supersymmetry-breaking terms in the observable sector at A and, because this 

scale is small, only a slight asymmetry is introduced by renormalization group extrapolation 

to low energies. This is in contrast to the supergravity scenarios where one generically needs 

to invoke additional flavor symmetries to achieve the same goal. 

If squark and gauginos have to be around 1 TeV, the scale A should be of the order of 

lo3 TeV. 

It is important to notice that this does not necessarily mean that I and (X) must 

be of the same order of magnitude of A, being only their ratio fixed to be around lo3 

TeV: the hierarchy dm, (X) >> A is certainly allowed [ 161. Large values of dm 

and (X) >> A may be obtained if, for instance, nonrenormalizable operators are involved. 

Another possibility is that the field X parametrizes a flat direction [16]. This is the case if 

in the superpotential the flat direction parametrized by the X superfield is coupled to some 
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other superfield whose VEV is vanishing, e.g. W = X&a, where <r, + @ are a pair of vector- 

like super-fields charged under some gauge group G. The F-component of the potential 

V(X) is vanishing and the flat direction is lifted up by soft SUSY breaking terms and by 

loop-corrections. It is expected that (X) may assumed any value between the weak scale 

and the Planck scale [16]. Indeed, at one-loop the potential of the X-field can be written as 

(for large values of the field) 

X 
V(X) = ?i&(&)X2 + cFi In Q , 0 (11) 

where 5?$ is the soft SUSY breaking mass term evaluated at the scale Q N X and c is a 

constant which depends on the degrees of freedom which couple to the superfield X. The 

soft SUSY breaking mass term ?Z$ may be originated by supergravity corrections. Another 

possibility is that ?Zg receives contribution from one-loop Yukawa interactions. To illustrate 

this idea, we can consider the following toy model 

W = XIAii@ + B (a@ + X2@+@- + X3B2) (12) 

where A and B are singlets, ip* have charge fl under a messenger U(1) and @ and q 

are cherged under some gauge group G. We assume that some SUSY breaking occurs in 

a hidden sector dynamically and is transmitted directly to the scalar states +* via the 

messenger U( 1) resulting in a negative mass squared m2 for these two states. Minimizing 

the potential, one can show that there is a flat direction represented by X = XIA •t B 

whose VEV is undertermined at the tree-level and that supersymmetry is broken with Fx = 
m2 
T (2-X:/3X3) ’ 

-2 mx gets a one-loop contribution proportional to Aim2 through the Yukawa 

interaction W = X2BQ+@-. 

Solving the renormalization group equations for Kg(&) one typically finds a solution of 

the form 

%dQ> N $dQo) 1 t bl [ n(iJl~ (13) 

where b is a coupling constant depending, again, on the degrees of freedom which couple to 

the X. Z&(Q) g oes through zero at g N Qs e-i. Since this mass term gives the dominant 

contribution to the effective potential for X, it is clear that (X) N g and, identifying Qs 

with Mpl, it is reasonable to expect that (X) can take any value between the weak scale 

and Mpl. As a result, fi = d\(x, can take any value between lo4 and 1012 GeV. 

III. THE p-PROBLEM AND ONE POSSIBLE SOLUTION 

Usually the p-problem refers to the the difficulty in generating the correct mass scale for 

the Higgs bilinear term in the superpotential 
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W,, = ~HuHD. (14 

For phenomenological reasons, ~1 has to be of the order of the weak scale. In hidden N = 1 

supergravity it is possibile to generate W, if the Kahler potential has a non minimal form 

and if it is forbidden in the limit of exact supersymmetry [15]. The p-problem in the familiar 

GMSB theories appears at a first sight more severe [17]. Indeed, it seems unnatural to have 

a p-term in the low energy theory since supersymmetry is broken dynamically and it would 

seem odd that the weak scale and the scale of /J coincide. Moreover, solutions existing in the 

framework of N = 1 supergravity cannot be applied directly here since the SUSY breaking 

F-components are not usually very large in GMSB models. In spite of these difficulties, some 

solutions to the p-problem have already been proposed. In particular, Leurer et al. have 

suggested a solution which might be applied both in the context of the N = 1 supergravity 

scenario and in GMSB models [18]. 

In addition to the usual fields of the minimal supersymmetric standard model, there 

is another singlet, S. As a consequence of discrete symmetries, the coupling SHu HD is 

forbidden in the superpotential. There are, however, various higher dimension couplings 

which can drive (S). In particular, consider terms in the effective Lagrangian of the form 

Sn+’ HIJ HD 

1 

+ MA 
-/d4SXtXStS. 

This structure can be enforced by discrete symmetries. 

In the N = 1 supergravity scenario the superfield X may be interpreted to be part of the 

hidden sector and therefore fi N 1011 GeV. In the context of GMSB models, it may be 

the same singlet superfield responsible for the splitting in the spectrum of the messangers 

(a, 0 
The first and the fourth terms in Eq. (15) can contribute to the effective negative 

curvature terms to the S potential. If (X) << M pl and, for example, p = m = 2 and n = 1, 

the p-term turns out to be 

p=a Fx, J- (16) 

Since the operator LSn+’ 
WI 

HUHD in the superpotential is expected to arise in the effective 

theory after having integrated out some heavy fields, the coefficient CY is expected to be very 

small. It will be equal to some powers of coupling constants times, eventually, some ratio of 

mass scales. For the mechanism to work, it is required that Q N 10s7 or so. 

Besides generating a p-term, this mechanism can also give rise to a nearly vanishing 

BP-term, i.e. the soft supersymmetry breaking term B,H,Hd in the Higgs potential. It is 
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noticeable that boundary conditions equal to zero for bilinear (and trilinear) soft parameters 

at the messanger scale makes the GMSB models free from the supersymmetric CP problem 

and highly predictive [19]. 

What is crucial for us is that the field S, although very weakly coupled to ordinary 

matter, may play a significant role in cosmology. We will devote the rest of the paper to 

explore the cosmological implications of such a field and to show that a succesful inflationary 

scenario may be constructed out of the potential for the field S. The fact that the inflaton 

field may be identified with the same scalar responsible for the generation of the p-term 

satisfies the minimal principle and allows us to connect a theory which could be tested at 

accelerators with measurements of the temperature anisotropy in the CMB. 

IV. THE INFLATIONARY STAGE 

Let us suppose that the phase transition during which the X-field acquires a vacuum 

expectation value for both its scalar and auxiliary components takes place at temperatures of 

order of fi or higher and that, both in the case in which SUSY is mediated by gravitational 

interactions and by gauge forces supersymmetry breaking is parametrized by an F-term of 

the order of Fx. 
Let us restrict ourselves to the case p = m = 2, and n = 1. The potential along the real 

component of the field S reads 

V(S) s-u F; - 

56 x ~7 I ’ ~8 

+ Mit MA MA ’ 

Under the condition (X) < Mpl, the true vacuum is at 

(S)4 - FxM;,, 

(17) 

(18) 

such that the p-term is proportional to (S)2/Mpl N a. Notice that we have added the 

constant N Fi in such a way that the the cosmological constant in the true vacuum is zero, 

V((S)) = 0. 

Around S = 0 we may considerably simplify the potential as 

V(S) N K-J - $s2 - $S4, 

where 

Vo N Fi, Fi m2 N 2- Fx 
MA 

and X-4- 
@, * 
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If the S-field starts sufficiently close to the origin the system may inflate. 

It is important to notice that the potential is characterized by a drastic steepening of 

the quadratic term. This means that, during inflation and soon after cosmological scales 

leave the horizon, the quartic term starts dominating. The quadratic and the quartic terms 

become comparable for S, N fi. Since this value is much smaller than (S) and all the 

dynamics giving rise to density perturbations takes place in the vicinity of the origin, the 

presence of the quartic term cannot be neglected as usually done in the determination of 

the CMB anisotropy and the spectral index of the power spectrum [3]. 

Before launching ourselves into the peculiar features of the model it is useful to deal with 

some generalities. During inflation the potential V(S) is supposed to satisfy the flatness 

conditions c << 1 and 171 < 1, where 

6 E ;M&(V’IV)‘, (21) 

q E M;,V”/V. (22) 

Given these conditions, the evolution of the S-field 

$+3Hi’=-V’ (23) 

typically settles down to the slow roll evolution 

3H9 = -V’, (24) 

where H = & represents the Hubble parameter during inflation. 

Slow roll conditions are motivated by the observed fact that the spectrum has mild scale 

dependence. Moreover, slow roll and the flatness condition E << 1 ensure that the energy 

density ps = V(S) •t a>” is close to V and is slowly varying. As a result H is slowly varying, 

which implies that the scale factor a of the universe grows exponentially, a cx eHt at least 

over a Hubble time or so.The flatness condition Iv] << 1 then ensures that S and E are slowly 

varying. 

A crucial role is played by the number of Hubble times N(S) of inflation, still remaining 

when S has a given value. By definition dN = -H dt, and the slow roll condition together 

with the flatness condition E. < 1 lead 

N= (25) 

If we assume that the quadratic term dominates while cosmological scales are leaving the 

horizon, the slow roll parameter 77 is given by 77 = q. Since the slow roll paradigm is well 

motivated, while cosmological scales are leaving the horizon, by the observed fact that the 

power spectrum of density perturbation does not vary much on such scales, a fundamental 

question is whether the slow roll conditions are satisfied in the model we are discussing. 
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A. The q-problem 

When dealing with inflation model building in the context of supersymmetric theories one 

has always to face a serius problem. The generalization of supersymmetry from a global to a 

local symmetry automatically incorporates gravity and, therefore, inflation model building 

must be considered in the framework of supergravity theories. In other words, the potential 

(17) should be extended to incorporate supergravity effects, see Eq. (2). This obviously 

holds in the case in which SUSY breaking is transmitted by gauge interactions, but it is also 

true in the context of GMSB models. 

In small-field models of inflation (values of fields smaller than the reduced Planck scale 

Mpl), where the theory is under control, it is reasonable to work in the context of supergrav- 

ity. The supergravity potential is rather involved, but it can still be written as a D-term 

plus an F-term, and it is usually supposed that the D-term vanishes during inflation. Now, 

for models where the D-term vanishes, the slow roll parameter q = M&V”/V generically 

receives various contributions of order fl. This is the so-called q-problem of supergravity 

theories. This crucial point was first emphasized in Ref. [20], though it is essentially a spe- 

cial case of the more general result, noted much earlier [21, 221, that there are contributions 

of order fH2 to the mass-squared of every scalar field. Indeed, in a small-field model the 

troublesome contributions to 77 may be regarded as contributions to the coefficient m2 in the 

expansion of the inflaton potential. Therefore, it is very difficult to naturally implement a 

slow roll inflation in the context of supergravity. The problem basically arises since inflation, 

by definition, breaks global supersymmetry because of a nonvanishing cosmological constant 

(the false vacuum energy density of the inflaton). In supergravity theories, supersymmetry 

breaking is transmitted by gravity interactions and the squared mass of the inflaton becomes 

naturally of order of V/M& N H2. The perturbative renormalization of the Kahler poten- 

tial is therefore crucial for the inflationary dynamics due to a non-zero energy density which 

breaks supersymmetry spontaneously during inflation and usually it is not temable. 

Even though it is beyond the scope of this paper to propose a solution to the v-problem, 

we would like to point out that how severe the problem is depends on the magnitude of q 

[3]. If 17 is not too small then its smallness could be due to accidental cancellations. On 

the other hand, having 7 not too small requires that the spectral index n = 1 - 6~ + 2r7 

is significantly displaced from 1. It is noticeable that accidentale cancellations giving rise 

to small values of 7 are not inconceivable in the model discussed in this paper. Indeed, 

supergravity contributions to q coming from the KHhler potential may be cancelled by the 

term of the form St SXtX in the lagrangian. As we shall see in the following, a peculiar 

prediction of the model is that the spectral index may be significantly displaced from 1. 

This tells us that accidental cancellations are not so unlikely in the present context . 
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B. The predictions of the power spectrum and the spectral index 

The quantum fluctuation of the inflaton field gives rise to an adiabatic density pertur- 

bation, whose spectrum is 

6&(k) = ’ 
V3 1 v 

757r2M& v’2 = 1507r2 M;, T’ (26) 

In this expression, the potential and its derivative are evaluated at the epoch of horizon exit 

for the scale k, which is defined by k = aH. The COBE measurement gives an accurate 

determination of 6~ on the corresponding scales because the evolution is purely gravitational 

(dominated by the Sachs-Wolfe effect). On the scale k II 5Ho one finds [24, 251 

6H = 1.94 x lo-5, (27) 

with a 2a uncertainty of 15%. This assumes that gravitational waves give a negligible 

contribution. 

Comparison of the prediction with the value deduced from the COBE observation of the 

CMB anisotropy gives 

Mp;3V3’2/V’ = 5.3 x 10-4. (28) 

This relation provides a useful constraint on the parameters of the potential. In our case, 
V’ = -m2S - AS3 + . . . and the two terms are equal at S N S, - m/G N a. If we 

suppose that the first term dominates while cosmological scales are leaving the horizon, but 

that the second term dominates before the end of inflation, it is easy to show that 

where z = iN(l - n). Consistency with the assumptions made imposes that z > i. 

With fixed n and N, the COBE normalisation determines X to be 

Jj = 2 X lo-l3 $ 3 (2a)3e(1-2z). 
( > (30) 

This COBE normalized value of X is smaller than the corresponding value for a pure S4 

model with a potential of the form V = Vi - as4 [3]. With the minimum value z = a, one 

reproduces the pure S4 result [3], otherwise X is smaller. The amplitude of the gravitational 

waves produced by quantum fluctuations is far too small to be detected since the variation 

of the field during inflation is much smaller than Mpl [26]. 
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C. The scale of the vacuum energy 

The COBE normalized value of X allows us to fix the scale fi: 

3/2e(i-z) GeV. (31) 

The exact value of N at which cosmological scales leave the horizon can be determined 

if the history of the universe after inflation is known. Consider the epoch when the scale 

k-1 = f&l N 3000h-l Mpc leaves the horizon, which can be taken to mark the beginning 

of cosmological inflation. Using a subscript 1 to denote this epoch, Ni = ln(u,,d/ui), where 

the subscript “end” denote the end of inflation, is given by [27] 

Ni = 62 - ln(1016 GeV/v,‘,I,“) - i ln(v,‘,l,“/&). (32) 
This formula assumes that the end of inflation gives way promptly to matter domination, 

which is followed by a radiation dominated era lasting until the present matter dominated 

era begins. pi,lh” is the reheating temperature when radiation domination begins. In the 

following we will see that the reheating temperature & is of order of 1 GeV or so and, 

since the dependence of Ni is only logarithmically dependent on Veiy, a reasonable value 

for Ni is given by Ni II 40. 

As far as the spectral index is concerned, the four year COBE measurement gives n = 

1.2 f 0.3 at the la level [28]. 

The precise determination of the spectral index n involves measurements of 8~ also 

on small scales. The main uncertainties are the value of the Hubble constant Ho = 

1OOh kms-‘Mpc-‘, the value of the baryon density fly, and the nature of the dark mat- 

ter. For instance, the case of pure cold dark matter is viable at present [29] with h N 0.5, 

a~ 21 0.12 and the spectral index is constrained to be in the range 

0.7 bn $0.9 (33) 

If there is an admixture of hot dark matter in the form of a single neutrino species [30], 

and taking 0~ < 0.15 and h > 0.4, the lower bound does not change significantly, but n is 

bounded from above to be smaller than about 1.3. 

As we have mentioned previously, it is more natural that in the model discussed in this 

paper the spectral index is significantly smaller than 1, leading to the so-called red spectrum. 

If so, accidental cancellations in the expression for 7 between the supergravity contributions 

and term of the form StSXtX in the lagrangian become more natural. On the other hand, 

the COBE normalized value of fi is very sensitive to the value of the spectral index. 

For n = 0.7 we find fi N 1.2 x 1011 GeV which is exactly the scale required in the 

framework of N = 1 hidden supergravity. This is quite an intriguing coincidence. It is also 
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remarkable that the energy scale is much smaller than the one required in many alternative 

inflationary models [3], usually of the order of the grand unified scale. This is a result of 

the the drastic steepening of the quadratic term in the potential V(S). 

If we allow a lower value of the spectral index, n = 0.6, which is still consistent at 20 

level with the four year COBE measurement, we find & N 1.1 x lOlo GeV. This value is 

slightly too small to be consistent with the supergravity scenario since superpartners would 

have masses of the order of 50 GeV. At a first sight this value might seem too large even in 

the framework of GMSB models. However, as we explained in the section II, the spectrum 

of the superparticles only fixes the ratio A = Fx/X to be relatively small and around lo3 

TeV, while fi may be much larger than Al. 

A spectral index n larger than about 0.8 gives a COBE normalized scale of SUSY breaking 

larger than about 3 x 1011 GeV, with a corresponding gravitino mass rns/2 = & >, 10 

TeV. This latter value seems slightly too high to be consistent with naturalness arguments 

suggesting that sfermion masses should be lighter than about 1 TeV or so. 

All these considerations lead us to conclude that the model studied in this paper is quite 

predictive. The density perturbations generated during the inflationary stage driven by the 

field S should be characterized by a spectral index n in the range (0.6 - 0.8). Moreover, 

larger values of In - 1 I are associated to relatively smaller values of the SUSY breaking scale. 

The next measurements of the temperature anisotropies in the cosmic microwave back- 

ground will confirm or disprove these expectations. If the future observations will indicate 

a value of the spectral index significantly displaced from 1, this might be interpreted as a 

signal that Nature has chosen the same scale at which breaking supersymmetry and driving 

inflation. It is intriguing that the next measurements of the two-point correlation function 

of the temperature anisotropy may help us to understand how large is the scale of super- 

symmetry breaking, what is the mechanism which mediates it, and to get a depper insight 

into the ,+problem. 

D. The problem of initial conditions 

Before studying in details the post-inflationary era, let us briefly address the issue of the 

initial condition for the field S. We have assumed that underlying the model are discrete 

‘One should a Iso note that a SUSY breaking scale as high as 10 l1 GeV does not imply necessarily 
that gravitational interactions are the only mediators of SUSY breaking. One can always envisage a 
mixed scenario in which the soft breaking masses of the sfermions and gauginos receive contributions 
from both gravitational and gauge interactions. In this paper, however, we take the attitude that 
the two sources do not overlap. 
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symmetries under which S transforms non-trivially. As a result, S = 0 is a special point, 

and it is natural that S may sit at this point initially. This despite the fact that it is very 

weakly coupled to ordinary matter, and might not be in thermal equilibrium. Many models 

of slow rollover inflation require a fine-tuning in the initial value for the field to be successful 

and the smaller is the scale of inflation the more severe is the fine-tuning [31]. From Eq. 

(25) we may infer that, in order to achieve the 40 or so e-foldings of inflation required, the 

initial value of the scalar field must be less than about 2 x lo7 (fi/lO” GeV) GeV. As a 

result, only regions where the initial value of the field is small enough will undergo inflation. 

These regions have grown exponentially in size and they should occupy most of the physical 

volume of the Universe. 

We notice that the small value of the field is not spoiled by quantum fluctuations which 

are of the order of 

Thermal fluctuations might spoil such a localization since (S2)g2 would be naturally of 

the order of T - fi. However, the inflaton field is so weakly coupled, being its couplings 

all suppressed by powers of Mpl, that it is easy to check that thermal contact with the rest 

of the Universe has never been established [31, 321. 

A possible dynamical tuning of the initial condition for the field S may be implied by a 

short period of “pre-inflation” [3312. Indeed, let us imagine that the universe underwent a 

short period of inflation with Hubble parameter HP-i before X and Fx acquire a vacuum 

expectation value. In such a case the field S gets an effective mass of the order of HP-i 

from supergravity corrections and it oscillates around S = 0 with its amplitude decreasing 

as a -3/2. At the end of the pre-inflationary stage the S takes the value Sp-i II Si e-iNp-i, 

where S; is the value of S at the beginning of pie-inflation and Np-i is the number of e-folds 

relative to pre-inflation. If we take Si N Mpl, fi N lOlo GeV and require that 

Sp-i 6 S, exp i - X , 
( > 

we find 

Np-i >, 20. (36) 

Quantum fluctuations generated during the pre-inflationary era are of the order of 

* e-iNp-i and do not kick the condensate to values larger than S,exp (f - x) . Therefore, 

2We assume here that density perturbations generated at this epoch are negligible. 
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if the ordinary period of inflation was preceded by a short period of pre-inflation [33], it is 

reasonable to expect that the field S is sitting with great accuracy so close to the origin that 

ordinary inflation may successfully take place. 

V. THE POST-INFLATIONARY STAGE 

Let us now consider the dynamics of the inflaton field after the end of inflation. After its 

slow roll, the field S begins to oscillate about the minimum of its potential and the vacuum 

energy that drives inflation is coverted into coherent scalar field oscillations corresponding to 

a condensate of nonrelativistic S-particles [34]. D uring this epoch of coherent S-oscillations 

the universe is matter dominated and the energy trapped in the S-field decreases as us3. The 

conversion of the vacuum energy to thermal radiation, usually dubbed reheating, takes place 

when the S-particles decay into light fields, which, through their decays and interactions 

produce a thermal bath. The reheating temperature is determined by the decay time of the 

scalar field oscillations which is set by the inverse of the decay width l?s of the field S. If 

Is >, H, the S-oscillations decay rapidly and the vacuum energy is entirely converted into 

radiation corresponding to a very high value of the reheating temperature, Tnn N fi. 

However, if Is <, H, which is the rule in slow roll inflation, the coherent oscillation is 

relatively long and the reheating temperature turns out to be of order of 

corresponding to a partial conversion of vacuum energy into radiation. 

At the minimum of its potential, the scalar field has a mass 

ms = JV@j 2 3% II lo3 ( ,o~ev)3’2 TeV. (38) 
Pl 

The scalar oscillations may decay into light Higgsinos S + ~~ELJ with a rate Is = * 

where 

(4 P (3) gma-w-- 
MPI ~&MPI 

(39) 

and we have properly taken into account the fact that ,U << fi. The resulting reheating 

temperature is then 

TRH N 10-2pF;‘8M;1’4 N 5 x lo2 
(I03/“ceV> (IOEV)“’ MeV’ (40) 

TRH is large enough to preserve the classical cosmology beginning with the era of nucleosyn- 

thesis. It seems difficult, however, to push the reheating temperature above the electroweak 
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scale, !?‘~w N 100 GeV. Thus, it appears that supersymmetric electroweak baryogenesis [35] 

is not a viable option for the generation of the baryon asymmetry. On the other hand, the 

decays of the inflaton themselves might be responsible for the baryon asymmetry [36]. 

A. The generation of the baryon asymmetry 

Let us imagine that the couplings by which the inflaton decays may contain CP-violation 

and baryon number violation. In order to produce a baryon asymmetry, we must have baryon 

number violating operators in the Lagrangian, such as 

- - - 
UDD, 

where generation indeces are suppressed The presence of such operator is compatible with 

the stability of the proton and the experimental absence of neutron-antineutron oscillations 

[37]. The baryon number violating decay rate is given by [38] 

where x2 E C ]A] 2 is the sum over the generations of the final state. We can estimate the 

baryon asymmetry produced by the inflaton decay in the following way. 

We assume that the amount of baryon number produced per decay is E. E is the product 

of CP-violating phases 6cp times some loop factors times the ratio of the baryon number 

violating decay rate over the total decay rate 

rB - N 1o-2 x2 
r tot 

(y-2 (g)2. m (43) 

The number of massless particles produced per decay is N $F&. Plugging in the expected 

values of the inflaton mass and the reheating temperature for fi N lOlo GeV, we find a 

baryon to entropy ratio 

B N 10-l x (loop factors) x &p x2, (44 

which can account for the observed baryon asymmetry B N 10-l’ for Scp N i N 10S2. 

B. The fate of gravitinos and moduli 

Let us finally discuss the cosmology of gravitinos and moduli when a period of late 

inflation takes place. 
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As we have mentioned in the introduction, in GMSB models gravitinos are usually ex- 

pected to be lighter than what predicted in the framework of N = 1 supergravity theories, 

since the mass of the gravitino is fixed by the scale of the F-term which breaks supersymme- 

try, m3f2 N &. However, if we insist in identifying the scale Fx with the one suggested by 

COBE normalization, gravitinos are not dramatically light, m3i2 11 50 GeV. These relatively 

heavy gravitinos do not pose any cosmological problem. 

In GMSB models the gravitino may be the lightest supersymmetric particle. Since R- 
--- 

parity is supposed to be broken only in the baryon number operator SW N X ($-) UDD, it 

is easy to show that the gravitino lifetime is longer than the present age of the universe so that 

the gravitino can be considered cosmologically stable. If a stable gravitino is thermalized in 

the early universe and not diluted by any mechanism, its mass density may exceed the closure 

limit Cl3/2 <, 1. Since the number density of gravitinos is fixed once they are thermalized, 

the above argument sets a stringent upper bound on the gravitino mass, ms/2 6 2 keV when 

no source of dilution is present [ll]. H owever, gravitinos are efficiently diluted during the 

inflationary stage driven by the field S and they are not produced in the subsequent stage 

of reheating. Indeed, gravitinos may be regenerated during reheating either by the decays 

of sparticles (or particles in the messanger sector) or by scatterings processes [39, 401. The 

first mechanism requires the reheating temperature to be at least of order of the typical 

sparticle mass, F6 N 100 GeV. Since the reheating temperature is at most of order of 1 GeV, 

the production of heavy states is drastically suppressed and gravitinos are not produced by 

decays of sparticles. Scattering processes are much more dangerous. Gravitinos are produced 

more at higher temperatures, which provides an upper bound on the reheating temperature 

from the bound O3/2 2 1: for m3i2 N 50 GeV, one gets Tnn 6 10’ GeV [39]. This bound is 

satisfied in the scenario depicted so far where inflation takes place at late times. We may 

safely conclude that stable gravitinos were not populating the universe at the beginning of 

the radiation era: the stable gravitino problem is solved by the late stage of inflation and 

by the fact that the reheating temperature is so low. 

This situation is much different from the one depicted in ref. [40]. There it was assumed 

that the scale of supersymmetry breaking is much smaller than lOlo GeV and, therefore, the 

gravitino is very light. It was also supposed that a primordial stage of inflation is terminated 

by reheating the universe up to a temperature of order of lo8 GeV or higher. Under these 

circumnstances , it was concluded that stable gravitinos are inevitably regenerated in great 

abundance during the reheat stage and that a significant amount of entropy release must take 

place after inflation to diluite them. This large amount of entropy release is not necessary 

in the scenario analyzed here since stable gravitinos are not populating the universe after 

reheat. 
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If the gravitino is not the lightest supersymmetric particle, it may decay with a typical 

lifetime T-33/2 N 102-$. This certaily occurs when supersymmetry breaking is mediated 

by gravitational interactions and the gravitino may be as heavy as 1 TeV, but it is also a 

possibility in the framework of GMSB models. 

Decays occur after the big-bang nucleosynthesis and produce an unacceptable amount 

of entropy, which conflicts with the prediction of big-bang nucleosynthesis. In order to keep 

the success of big-bang nucleosynthesis, the gravitino mass should be larger than about 10 

TeV. However, if the universe went through a period of late inflation, any initial abundance 

of gravitino is diluited by the exponential expansion of the universe, but gravitinos are 

regenerated during the reheatings stage. The most stringent upper bound on TRH in the 

case of unstable gravitinos comes from the photo-dissociation of light nuclei. Indeed, if 

gravitinos decay radiatively, the emitted high energy photons induce cascade processes and 

affect the results of big-bang nucleosynthesis. Other possible constraints are from the mass 

density of the lightest supersymmetric particle and the enhancement of cosmic expansion 

due to the gravitino. A detailed analysis has been performed in [41] where it was concluded 

that grav itinos in the mass range (lo2 - 103) GeV are harmeless for reheating temperature 

smaller than about (lo6 - 10’) GeV. Again, this is satisfied in the scenario studied in this 

paper. 

If we assume that the underlying theory is a string theory, we have also to face the so- 

called cosmological moduli problem [12]. In string models massless fields exist in all known 

string ground states and parametrize the continuous ground state degeneracies character- 

isitic of supersymmetric theories. These fields M are massless to all orders in perturbation 

theory and get their mass of order the weak scale from the same mechanism which breaks 

supersymmetry. Being coupled to the ordinary matter only by gravitational strength, a 

dangerously long lifetime results. Indeed, if one of these fields at early epochs is sitting 

far from the minimum of its potential with an amplitude of order of the Planck scale, the 

coherent oscillations about the minimum will eventually dominate the energy density of the 

universe. These fields will then behave like nonrelativistic matter and decay at very late 

times, dominating the energy of the universe until it is too late for nucleosynthesis to oc- 

cur. A related and possibly more serious problem is that, during the decays, an enormously 

amount of entropy is released erasing out any pre-existing baryon asymmetry. 

This problem is somewhat ameliorated in our scenario. The period of inflation driven 

by the field S may take place at a sufficiently late stage of the universe, H 2 mm, that the 

number density of string moduli is reduced by a factor exp(-3N) and by the subsequent 

entropy production at the reheat stage [13]. It is an attractive feature of the present scenario 

that this is possible. However, this is not generally enough, since the minimum of the moduli 
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potential, generically, will be shifted by an amount of order Mpl during inflation, as a result 

of couplings of the moduli 

pe [xw (&) + S% (&)I - (45) 

So it is probably necessary to invoke symmetry reasons so that the minima during inflation 

and at the present day coincide to a high degree of accuracy. In the context of GMSB 

models, it might be tempting to abandon the assumption that fi is as high as lOlo GeV 

and to concern ourselves with smaller values of fi, of the order of (lo5 - 106) GeV. In 

such a case, it is clear that the inflationary stage driven by the field S cannot be responsible 

for the generation of the density perturbations, but it might be useful to diluite light string 

moduli. A number of e-folds larger than about 5 would be sufficient to diluite sting moduli 

by a factor 10-15. It is also easy to check the number of e-folds cannot exceed N 20 or so in 

order to keep the primordial density fluctuations generated by a “standard” inflation with 

H N 1013 GeV [13]. By looking at Eq. (32), we realize that in the present model this is not 

a viable option. Indeed, the number of e-folds turns out to be simply too high, Ni - 30. 

VI. CONCLUSIONS AND OUTLOOK 

One of the most important paradigms in the cosmology of the early universe is that the 

latter suffered a period of accelerated expansion. This inflationary stage provides a possible 

solution to cosmological conundrums such as the flatness, the horizon and the monopole 

problems. It is generaly believed that any successful inflationary scenario is intimately 

connected to some new physics at extremely high scales. Observational cosmology is now 

entering a new and exciting period where it is becoming possible to test inflationary models 

for the first time. Such new measurements represent a unique occasion to get some insight 

into new physics beyond the standard model. 

Inflation, as currently understood, requires the presence of fields with very flat potentials. 

The extreme flatness of the inflaton potential seems technically natural only in supersym- 

metric models since the nonrenormalization theorems guarantee that the flateness of the 

potential is not spoiled by radiative corrections. Therefore, it seems that the way Nature 

has chosen to accomplish inflation depends upon the way and the scale at which supersym- 

metry is broken. Two different ways of transmitting supersymmetry breaking are currently 

very popular: in the supergravity scenario it is gravity which acts as mediator and in GMSB 

models standard model this role is played by gauge interactions. 

By taking inspiration from a possible solution to the p-problem, we have presented a 

simple model for slow rollover inflation which is minimal in the sense that the inflaton may 

be identified with the field responsible for the generation of the p-term. Inflation takes 

22 



place when the inflaton condensate is rolling down from the origin and the potential is 

characterized by a dramatic steepening of the quadratic term. This implies that the COBE 

normalized value of the vacuum energy may be naturally of the order of 1011 GeV which 

seems to favor the N = 1 supergravity scenario. Smaller values of the vacuum energy are not 

presently excluded and therefore the inflationary scenario may be also implemented in the 

context of GMSB models. This option is pleasing since in this class of models supersymmetry 

breaking masses are proportional to the F-term of a gauge singlet superfield and the same 

F-term may provide the vacuum energy density necessary to drive inflation. 

We have shown that the reheating after the end of inflation is not very efficient. The 

particles popping out from the decay of the inflaton oscillations around the true minimum of 

the potential rapidily thermalize with a typical energy !&H N 1 GeV. As a result, gravitinos 

cannot be produced by thermal scatterings and are cosmologically harmless. The number 

density of string moduli may be reduced during late inflation, however a detailed inspection 

of the string moduli potential is needed before making any solid prediction. In spite of the 

low reheating temperature, the baryon asymmetry may be generated by the decays of the 

inflaton field if the latter has nonrenormalizable and baryon number violating couplings. 

Finally, the spectrum of density perturbations is characterized by a spectral index which 

is significantly displaced from 1. This does not come as a surprise since large values of In - l( 

are generally associated to relatively small values of the vacuum energy. This prediction has 

the advantage that the next measurements of the temperature anisotropies in the CMB will 

be able to say the last word about the viability of the model and, hopefully, on the way 

supersymmetry is fed down to the observable sector. 
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